Mike’s Emerald Night

The LEGO train locomotive The Emerald Night (set 10194), which came out in at the end of 2011, is arguably one of the finest locomotives that LEGO has produced. It is not without its flaws… but the AFOL community has worked hard on modification, which can easily be found. The Emerald Night is based on the British locomotive, the Flying Scotsman, which dates back to February 1923.

Some statistics on Mike’s train:
– One locomotive (though he has two more spares), two tenders, and 13 rolling stock.
– Total length: 153 inches (12’ 9” )  or  3.88 meters (388cm)
– Total weight of train, tenders, and carriages: 13.45 lbs or 6.10 kgs.
As part of the Calgary LEGO Train Club, this is a significant crowd pleaser when it is operating on a large track at one of our shows. Thanks Mike!

Emerald Night – 10194
MOC – Royal Post Car
MOC – Maintenance Car
MOC – Luggage Car
MOC – Royal Post Sorting Car

Motorize LEGO 7810 Locomotive

The 40th anniversary LEGO commemorative set 40370 to bring back set 7810 is a very clean, simple build. The locomotive has a classic simplicity to it that makes it appropriate for any railway display, and it has a nice six-wide / mini-figure scale that works. The new train comes as a push train with brick built buffers where as the old train was built on a custom modified chassis plate, element 4178, which getting increasingly hard to purchase.

There are a couple of people that have motorized this set either with a medium motor in the steam drum or by pushing the train with a motorized coal tender. I thought I would share how I motorized this locomotive using five (5) small eight tooth gears (3647) connected in row on a technic five hole lift arm (32316). Using a the three stud wide technic connecting pin (6558) to connect the lift arm at the top of the motor and a 2×2 modified plate with two pin holes (2817) near the bottom provided adequate support. This also allowed all three wheel sets to be geared together so that they all were turned by the motor.

Medium Motor and Lift Arm / Gears to Drive Locomotive
Lower Support of Lift Arm
Gears Beneath the Locomotive

Green MOC Steam Locomotive

Okay.  I must start with my frustration that The LEGO Group has not provided a solution to the metal clad track that was replaced with plastic track (also known as Power Function or PF track) back in about 2009.  For clubs such as the Calgary LEGO Train Club, we rely on metal clad track (silver nickel) nine volt  (9V) track for shows to minimize to use plugged in power supplies to energize the track, rather than battery power.  This reduces the number go batteries we consume over a weekend during a show.

We have tried a number of methods of custom making the metal wheels to pick up power from the track, but with limited success.  This is for two reasons:

  1. The LEGO Group did an outstanding job engineering the wheels on the 9V motors so that they are spring loaded and pick up power predominantly from the side flange contacting the inner portion of the rail.
  2. The choice of silver nickel has minimal corrosive issues and provides excellent electrical continuity.

Long story short, for this custom MOC train, I finally capitulated and power it with PF.  A few interesting facts:

  • The motor inside is a LEGO 9V PF medium sized DC motor, set 8883. The gearing to the larger steam engine wheels turns the front wheel at an appropriate gear ratio, and the connecting rod (off set on the other side by a quarter revolution) allows all three wheels to turn together.  Note that the wheel configuration is flanged / blind / flanged so that the locomotive can navigate turns.
  • The tender car in back holds the PF InfraRed (IR) controller as well as the battery box.  I just noticed I forgot, in the photo, to put the yellow grab rails on the back of the tender car… but will add them.  Oops!
  • The wiring between the IR controller is done with individual wires and not a LEGO part number.  The primary reason for this is the DC motor that I used was used, and the cable was broken by children using it with the wires getting twisted sharply, breaking the cable.  Therefore, the motor is easy to take apart and re-wire.  In doing this, one takes the PF connector end and salvages it.  You  wire from the DC motor to the centre pair of wires on the remaining cable of the PF connector, as these are speed regulated by the IR controller.  See Philo’s page on Power Functions.
  • The fun part for me is to light up the locomotive.  The outer pair of wires from the PF connector have 9V all the time as long as the battery box is turned on with the green button.  Then if you put four LEDs in series with a small ~50Ω resistor (three red and one white LED), at 9V you end up with the current flowing at about 7.5mA.  With the train sitting still, this is well within the specifications of a AAA battery (ideal low draw for the AAA battery is about 10mA) and assuming they are about 1000mAH (milli Amp Hours), the train would last over 100 hours with just the lights on.   Going back to Philo’s motor comparison page, the medium motor will use between 65mA and 300mA depending on load.  Therefore, the train pulling a few rolling stock cars would run for a few hours on one set of batteries and the lights are negligible.  This aligns with the club’s experience in what we see when we use PF trains at train shows.

Green Steam Locomotive
Green Steam Locomotive

Green Steam Locomotive
Green Steam Locomotive

Green Steam Locomotive
Green Steam Locomotive

Green Steam Locomotive
Green Steam Locomotive

Green Steam Locomotive
Green Steam Locomotive